Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
preprints.org; 2022.
Preprint em Inglês | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202203.0185.v1

RESUMO

The scientific, private and industrial sectors use a wide variety of technological platforms available to achieve protection against SARS-CoV-2, including vaccines. However, the virus evolves continually into new highly virulent variants, which might overcome the protection provided by vaccines and may re-expose the population to infections. Mass vaccinations should be continued in combination with more or less obligation mandatory non-pharmaceutical interventions. Therefore, the key questions to be answered are: (i) How to identify the primary and secondary infections of SARS-CoV-2? (ii) Why are neutralizing antibodies not long-lasting in both the cases of natural infections and post-vaccinations? (iii) Which are the factors responsible for this decay in neutralizing antibodies? (iv) What strategy could be adapted to develop long-term herd immunity? (v) Is the Spike the only vaccine candidate or a vaccine cocktail is better?


Assuntos
COVID-19
2.
preprints.org; 2021.
Preprint em Inglês | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202106.0472.v1

RESUMO

Several hypotheses have been presented on the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from its identification as the agent causing the current coronavirus disease 19 (COVID-19) pandemic. So far, no hypothesis has managed to identify the origin, and the issue has resurfaced. Here we have unfolded a pattern of distribution of several mutations in the SARS-CoV-2 proteins across different continents comprising 24 geo-locations. The results showed an evenly uneven distribution of unique protein variants, distinct mutations, unique frequency of common conserved residues, and mutational residues across the 24 geo-locations. Furthermore, ample mutations were identified in the evolutionarily conserved invariant regions in the SARS-CoV-2 proteins across almost all geo-locations we have considered. This pattern of mutations potentially breaches the law of evolutionary conserved functional units of the beta-coronavirus genus. These mutations may lead to several novel SARS-CoV-2 variants with a high degree of transmissibility and virulence. A thorough investigation on the origin and characteristics of SARS-CoV-2 needs to be conducted in the interest of science and to be prepared to meet the challenges of potential future pandemics.


Assuntos
Infecções por Coronavirus , COVID-19
3.
preprints.org; 2021.
Preprint em Inglês | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202101.0297.v1

RESUMO

Therapeutic options for the highly pathogenic human Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) causing the current pandemic Coronavirus disease (COVID-19) are urgently needed. COVID-19 is associated with viral pneumonia and acute respiratory distress syndrome causing significant morbidity and mortality. The proposed treatments for COVID-19, such as hydroxychloroquine, remdesivir and lopinavir/ritonavir, have shown little or no effect in the clinic. Additionally, bacterial and fungal pathogens contribute to the SARS-CoV-2 mediated pneumonia disease complex. The antibiotic resistance in pneumonia treatment is increasing at an alarming rate. Therefore, carbon-based nanomaterials (CBNs), such as fullerene, carbon dots, graphene, and their derivatives constitute a promising alternative due to their wide-spectrum antimicrobial activity, biocompatibility, biodegradability and capacity to induce tissue regeneration. Furthermore, the antimicrobial mode of action is mainly physical (e.g. membrane distortion), which is characterized by a low risk of antimicrobial resistance. In this review, we evaluated the literature on the antiviral activity and broad-spectrum antimicrobial properties of CBNs. CBNs had antiviral activity against 12 enveloped positive-sense single-stranded RNA viruses similar to SARS-CoV-2. CBNs with low or no toxicity to the humans are promising therapeutics against COVID-19 pneumonia complex with other viruses, bacteria and fungi, including those that are multidrug-resistant.


Assuntos
Infecções por Coronavirus , Síndrome do Desconforto Respiratório , Pneumonia Viral , Pneumonia , Síndrome Respiratória Aguda Grave , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA